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ABSTRACT

We report initial observations aimed at the characterization of a third interstellar object candidate.

This object, 3I/ATLAS—also C/2025 N1 (ATLAS)—, was discovered on 2025 July 1 UT and has

an orbital eccentricity of e ∼ 6.2, perihelion of q ∼ 1.35 au, inclination of ∼ 175◦, and hyperbolic

velocity of V∞ ∼ 60 km s−1. 3I/ATLAS has an absolute magnitude of HV ∼ 12, which corresponds

to a nuclear radius of ∼ 10 km, assuming an asteroid-like albedo of p ∼ 0.05. The discovery of this

object implies a spatial number density of n0 ∼ 10−3 au−3 for objects with radii greater than or

equal to that of 3I/ATLAS. We report deep stacked images obtained using the Canada-France-Hawaii

Telescope that display faint activity. Using images obtained from the Las Cumbres Observatory 0.36

m telescopes at Haleakala and the 2.0 m Faulkes Telescope North, we find a small light curve variation

of less than 0.2 mag for the object over a ∼ 29 h time span. The visible/near-infrared spectral slope of

the object is red, comparable to 1I/‘Oumuamua. The object will be observable until September 2025,

unobservable near perihelion due to low solar elongation, and observable again in November. This

limitation unfortunately prohibits detailed observations at perihelion when the activity of 3I/ATLAS

is likely to peak. Based on the experience of 1I/‘Oumuamua and 2I/Borisov, we ask the community
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to maintain a constant observational presence while possible with photometric, spectroscopic, and

polarimetric methods. Such observational data would constrain the (i) light curve, (ii) onset and

variation of activity, and (iii) nongravitational effects. It is essential that the community collaborate

to rapidly and comprehensively characterize these properties of 3I/ATLAS.

Keywords: Asteroids (72) — Comets (280) —Meteors (1041) — Interstellar Objects (52)

1. INTRODUCTION

The first two interstellar objects identified traversing

the inner Solar System, 1I/‘Oumuamua (G. V. Williams

et al. 2017) and 2I/Borisov (G. Borisov et al. 2019), were

discovered in 2017 and 2019 respectively. It has been

suggested that interstellar objects could have formed in

a protostellar disk (E. Gaidos et al. 2017) or within a

giant molecular cloud core (C.-H. Hsieh et al. 2021).

Although there is little hope of identifying the home

systems for a given interstellar object (T. Hallatt & P.

Wiegert 2020), they provide the only opportunity to di-

rectly measure the properties of cometary bodies that

formed outside of our solar system.

These first interstellar objects displayed divergent

properties. For one, while 1I/‘Oumuamua displayed no

cometary tail (K. J. Meech et al. 2017; Q.-Z. Ye et al.

2017; D. Jewitt et al. 2017; D. E. Trilling et al. 2018),

its trajectory implied a nongravitational acceleration at

∼ 30σ (M. Micheli et al. 2018). Meanwhile, 2I/Borisov

displayed definitive outgassing and dust activity (D. Je-

witt & J. Luu 2019; A. Fitzsimmons et al. 2019; B. T.

Bolin et al. 2020; Q. Ye et al. 2020; A. J. McKay et al.

2020; P. Guzik et al. 2020; M.-T. Hui et al. 2020; Y.

Kim et al. 2020; G. Cremonese et al. 2020; B. Yang

et al. 2021). The excess velocity of 1I/‘Oumuamua and

2I/Borisov also differed significantly. These objects had

velocities of V∞ ∼ 26 km s−1 and V∞ ∼ 32 km s−1 re-
spectively, which approximately correspond to ages of

∼ 102 and ∼ 103 Myr (E. Mamajek 2017; E. Gaidos

et al. 2017; F. Feng & H. R. A. Jones 2018; F. Almeida-

Fernandes & H. J. Rocha-Pinto 2018; T. Hallatt & P.

Wiegert 2020; C.-H. Hsieh et al. 2021). In addition,

1I/‘Oumuamua displayed brightness variations of ∼ 3.5

magnitude corresponding to an extreme oblate 6 : 6 : 1

geometry (M. Drahus et al. 2017; M. M. Knight et al.

2017; B. T. Bolin et al. 2018; W. C. Fraser et al. 2018;

A. McNeill et al. 2018; M. J. S. Belton et al. 2018; S.

Mashchenko 2019) and had a moderately red reflectance

∗ NSF Astronomy and Astrophysics Postdoctoral Fellow
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‡ NSF Graduate Research Fellow
§ Fannie and John Hertz Foundation Fellow

spectrum (J. Masiero 2017; A. Fitzsimmons et al. 2018;

M. T. Bannister et al. 2017).

These divergent properties led to a variety of hypoth-

esis regarding the provenance of the population. Al-

though 2I/Borisov’s coma displayed volatile species typ-

ically seen in comets (C. Opitom et al. 2019; T. Kareta

et al. 2020; H. W. Lin et al. 2020; M. T. Bannister et al.

2020; Z. Xing et al. 2020; K. Aravind et al. 2021), it

had a high enrichment of CO relative to H2O (D. Bode-

wits et al. 2020; M. A. Cordiner et al. 2020). These ra-

tios differentiate its composition from most solar system

comets, which are typically rich in H2O and contain CO

between 1-15% relative to water (N. Biver et al. 2024).

1I/‘Oumuamua’s lack of cometary tail despite its non-

gravitational acceleration have led to a variety of hy-

pothesized origins. M. Micheli et al. (2018) noted that

for radiation pressure to cause the nongravitational ac-

celeration, the object must either have an exceptionally

low density or an extreme geometry. Such a density is a

possible byproduct of diffusion-limited aggregation for-

mation processes in the outskirts of a protostellar disk

(A. Moro-Mart́ın 2019). Somewhat counterintuitively,

it has also been demonstrated that such hypothetical

structures bound together by weak van der Waals forces

could survive tidal disruption from Solar tides (E. G.

Flekkøy et al. 2019). It was also hypothesized that such

a fractal aggregate could form in the coma of a undis-

covered parent interstellar comet (J. X. Luu et al. 2020).

Alternatively, 1I/‘Oumuamua could have been out-

gassing volatiles with low levels of dust production, ren-

dering it photometrically inactive in all extant obser-

vations (M. Micheli et al. 2018; Z. Sekanina 2019; D.

Seligman & G. Laughlin 2020; W. G. Levine et al. 2021;

W. G. Levine & G. Laughlin 2021; S. J. Desch & A. P.

Jackson 2021; A. P. Jackson & S. J. Desch 2021; S. J.

Desch & A. P. Jackson 2022; J. B. Bergner & D. Z. Selig-

man 2023). This argument has been recently bolstered;

since the discovery of 1I/‘Oumuamua, a series of pho-

tometrically inactive near-Earth objects (NEOs) have

been reported to have significant comet-like nongravi-

tational accelerations (D. Farnocchia et al. 2023; D. Z.

Seligman et al. 2023, 2024). These objects imply that

1I/‘Oumuamua-like nongravitational accelerations may

be more common than previously thought. Regardless,

http://astrothesaurus.org/uat/72
http://astrothesaurus.org/uat/280
http://astrothesaurus.org/uat/1041
http://astrothesaurus.org/uat/52
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our understanding of interstellar objects is incomplete.

See A. Fitzsimmons et al. (2023), D. Z. Seligman & A.

Moro-Mart́ın (2023), D. Jewitt & D. Z. Seligman (2023),

and A. Moro-Mart́ın (2022) for recent reviews on this

topic.

In this paper we report early observations and analysis

to help inform the planned observing programs over the

next few months.

2. DISCOVERY AND HYPERBOLIC ORBIT

CHARACTERIZATION

3I/ATLAS was discovered through the robotic observ-

ing schedule from ATLAS Chile on the evening of 2025

July 1 and given the internal designation A11pl3Z23

(see Figure 1). The discovery tracklet was immedi-

ately submitted to the Minor Planet Center (MPC).

Follow-up observations were then conducted by ATLAS

in Hawaii, Sutherland (South Africa), and the Canary

Islands, along with dozens of other observatories world-

wide. The discovery was made by ATLAS largely be-

cause the object was located in the Galactic plane—a

region typically avoided by more sensitive surveys such

as Pan-STARRS and Catalina Sky Survey.

Prediscovery pairs and triplets were identified in AT-

LAS data from five days earlier by Sam Deen and later

refined and re-submitted to the MPC by the ATLAS

team. Additional precovery images were later found

in ZTF survey data using the method described above.

The object had remained quite faint until the end of

May, when it reached magnitude ∼ 20. At the time

of discovery in the ATLAS data, it had brightened to

magnitude 17.7-17.8 in the o-band filter (see Figure 1).

This initial discovery and prediscovery arc, covering

a total of about 18 days, is already sufficient to deter-

mine the large eccentricity, and consequently hyperbolic

nature of the object’s orbit. As soon as the unusual

nature of the object became evident, a large amount of

follow-up observations were obtained on 2025 July 2 by

various observatories, leading to additional astrometric

measurements, including those reported here (as better

outlined below in Section 3).

Our best estimate of the heliocentric orbital elements

of the object, at the time of posting of this paper, are

listed in Table 1. In Figure 2, we show the orbit of the

object in comparison to previously discovered interstel-

lar objects.

From the current heliocentric orbit it is possible to in-

fer the incoming trajectory of the object before it en-

tered our Solar System. The eccentricity of the ob-

ject’s orbit with respect to the Solar System barycen-

23 https://www.minorplanetcenter.net/mpec/K25/K25N12.html

Figure 1. Cutout images from the first and fourth dis-
covery observations of 3I/ATLAS from the ATLAS Chile,
spanning approximately one hour. 3I/ATLAS is moving at
0.49 deg/day against the stellar background. The cardinal
directions and direction of motion are indicated with arrows,
and 3I/ATLAS identified within the red circle. (a) Unsub-
tracted image from 05:15:11 UT; (b) Unsubtracted image
from 06:20:31 UT.

ter, computed before interacting with our planetary sys-

tem, can be extrapolated as eb = 6.21 ± 0.11. This

value, together with an incoming pericenter distance of

qb = (1.371± 0.014) au, results in an incoming velocity

v∞ = (58 ± 1) km s−1, from an asymptote directed to-

https://www.minorplanetcenter.net/mpec/K25/K25N12.html
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Table 1. Initial orbit of 3I/ATLAS, computed with 132 as-
trometric observations (three excluded as outliers) extending
from 2025 June 14 to 2025 July 1. Heliocentric orbital ele-
ments at the epoch of 2025 July 1.0 TT.

Orbital element Value ± 1σ

Perihelion distance q [au] 1.3655706 ± 0.0137087

Eccentricity e 6.202526 ± 0.104953

Inclination i [◦] 175.11370 ± 0.00460

Longitude of ascending node Ω [◦] 322.19723 ± 0.11135

Argument of perihelion ω [◦] 127.88693 ± 0.14201

Time of perihelion TP [MJD, TT] 60977.39531 ± 0.21759

wards a Right Ascension of ∼ 295◦ and a Declination of

∼ −19◦, in the constellation of Sagittarius and not far

from the Galactic Center.

3. LIGHT CURVE AND ACTIVITY

As soon as the interstellar nature of the object became

evident, we obtained observations with the European

Space Agency’s (ESA) Test Bed Telescopes (TBTs) and

the Las Cumbres Observatory (LCO) telescopes, ex-

ploiting the ideal location of TBT in Chile and of the

Haleakalā (Hawaii, USA) node of the LCO network.

We first tasked ESA’s 0.56 m TBT (MPC code W57)

at the La Silla Observatory (Chile). The telescope has a

field of view of 2.5 × 2.5 degrees and is fully devoted to

NEO survey and follow-up jobs. It can be interrupted at

any time for these high-profile targets. We acquired 31

unfiltered 163 s exposures starting at 06:34 UT July 2

spanning a total of 93 minutes. Astrometry was reported

in ADES format including astrometric uncertainties.

In parallel, we obtained detections with one of the

0.36 m telescopes on Haleakalā (MPC code T03), con-

firming the existence of the object and extracting some

astrometric measurements with uncertainties of approx-

imately ±0.′′25. The measurements were immediately re-

ported to the MPC in ADES format, including exposure-

specific astrometric uncertainties.

We subsequently scheduled a one-hour observing se-

quence using two separate 0.36-meter telescopes from

the LCO Haleakalā observatory (MPC codes T03, T04)

and the 2.0 m Faulkes Telescope North (FTN, MPC code

F65), part of the same network. The goal was to ob-

tain a preliminary light curve and determine whether

this newly detected object exhibited rotational vari-

ability as extreme as that observed in 1I/‘Oumuamua.

In contrast to the first known interstellar object, how-

ever, 3I/ATLAS displays a notably flat light curve with

brightness variations of less than 0.2 magnitude over the

observed 29-hour time span (see Figure 3). Additional

follow-up observations will be necessary to constrain its

4 2 0 2 4
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Jupiter
1I/ Oumuamua
2I/Borisov
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z [
au

]
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Figure 2. Heliocentric orbit (ECLIPJ2000) of
1I/‘Oumuamua, 2I/Borisov, 3I/ATLAS (A11pl3Z), Earth,
Mars, and Jupiter. Markers denote each body position at
discovery. Vernal equinox direction is indicated.

rotation period. These images were also used to extract

further astrometric measurements, accurate to approx-

imately ±0.′′1 (also already reported in ADES to the

MPC), which provide a high-fidelity anchoring point to

our orbital solution.

A series of 3 × 60 s gri -band non-sidereally guided

images were obtained with the MegaCam mosaic-CCD

on the 3.6 m Canada-France-Hawaii Telescope (CFHT;

MPC code T14) on 2025 July 2 to check for faint

cometary activity. The highest-quality image had a stel-

lar FHWM of 0.′′72±0.′′05 measured perpendicular to the

direction of trailing, while the object had a FWHM of

1.′′29±0.′′02. The magnitude in a 5.′′ radius aperture was

17.2 in the Gaia DR2 G band after three background

stars were masked, although the field was crowded. Fig-

ure 4 shows stacked composite image of these data in

which faint activity is visible.

4. COLOR

We observed the target with the 2.0 m FTN on

Haleakalā using the four-channel MuSCAT3 imager,

which records the Sloan g′-, r′-, i′-, and zs-bands si-

multaneously. Two multi-filter imaging sequences were

obtained: (i) six exposures of 30 s in each filter, and

(ii) three exposures of 50 s in each filter, yielding total

integrations of 180 s and 150 s per band, respectively.

For context, as part of the LCO Outbursting Objects

Key project (LOOK; T. Lister et al. 2022), we also

obtained deep imaging observations with FTN on the
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Figure 3. Light curve of 3I/ATLAS. The initial segment (left) was obtained with the Las Cumbres Observatory (LCO) 0.36 m
telescopes at Haleakala (MPC code T03), while the middle and right segments were collected using the 2.0 m Faulkes Telescope
North (FTN, MPC code F65). The data show a predominantly flat light curve, indicating minimal brightness variation during
the observation period.

Figure 4. Stacked gri-band image cut-out (96.′′ width) from
CFHT on 2025 July 2 showing faint activity. North is up,
and East to the left.

same night to search for activity (and therefore judge

the reliability of the multi-filter observations as being

indicative of 3I/ATLAS’s surface composition), where

we found the target to be largely inactive (Figure 5).

The data output by the LCO reduction pipelines were

processed with PhotometryPipeline (M. Mommert

2017), which performs SCAMP astrometric solutions

against Gaia DR3 and aperture photometry calibrated

to Pan-STARRS DR2. In Figure 6, we show the result-

Figure 5. Stacked composite images of (a) 3I/ATLAS and
(b) a reference field star constructed from 19 r′-band expo-
sures of 60 s each (1140 s total integration time) using FTN
on UT 2025 July 2.

ing four-color surface reflectance spectrum of the object

from the FTN.

We also utilized the 4.3 m Lowell Discovery Telescope

(LDT) to observe as the object set on the morning of

2025 July 2 UT. Filtered images were taken sequentially

(typically r−g− i− r−z− r−z) with the Large Mono-

lithic Imager (LMI, P. Massey et al. 2013) in a 3 × 3

binning providing a per-pixel resolution of 0.′′36. Cloud

cover was highly variable but other atmospheric condi-

tions were relatively stable, rendering the astrometry of

several frames useful but the overall colors unreliable

compared to those taken with FTN.

The colors of 3I/ATLAS as seen in Figure 6 are rel-

atively linear (e.g., without obvious absorption features

or spectral curvature) significantly redder than those of

the Sun. This reflectance spectrum is similar to that

retrieved for 1I/‘Oumuamua by Q.-Z. Ye et al. (2017)

and 2I/Borisov by J. de León et al. (2020), both slightly
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Figure 6. The g′,r′,i′,z′ colors of 3I/ATLAS obtained
with FTN normalized at 5500 Å and plotted against
1I/‘Oumuamua (Q.-Z. Ye et al. 2017), 2I/Borisov (J. de León
et al. 2020), the extremely red Centaur Pholus (R. P. Binzel
1992), and the mean D-type asteroid spectrum (F. E. DeMeo
et al. 2009). Note that errors on the color measurement are
plotted, but are approximately the size of the plot points.
3I/ATLAS shows a moderately red spectral slope similar to
1I/‘Oumuamua and 2I/Borisov.

redder than the D-type asteroids F. E. DeMeo et al.

(2009), but not as red as seen in some outer Solar Sys-

tem objects. Given that 3I/ATLAS is at least weakly

active, some of the reflected light must be from its coma

– but cometary comae are only sometimes this red for

typical dust compositions (see modeling and discussions

of typical Solar System comets in S. Protopapa et al.

2018; T. Kareta et al. 2023). 2I/Borisov’s coma was

similarly red (see, e.g., J. de León et al. 2020), but the

object was also significantly more active at the time of

the observations. Depending on the size of 3I/ATLAS’s

nucleus, these reflected colors could indicate an underly-

ing 1I/‘Oumuamua-like surface with minimal dust con-

tamination or a 2I/Borisov-like coma drowning out the

nuclear signal. The flatness of 3I/ATLAS’s lightcurve

might indicative of the latter.

5. DISCUSSION

The lower-limit absolute magnitude of 3I/ATLAS is

HV ∼ 12, assuming that the object is asteroid-like. For

a given absolute magnitude, the size of an inactive object

is given by (P. Pravec & A. W. Harris 2007):

RNuc =

(
1329

2
√
p

)
10−0.2H . (1)

In Equation 1, p is the geometric albedo, H is the abso-

lute magnitude, and RNuc is the radius of the nucleus as

measured in kilometers. Eq. 1 implies that the radius

of 3I/ATLAS, R3I, is:

R3I = 11.8 km

(
0.05

p

)−1/2

(2)

This estimate assumes that 3I/ATLAS is asteroid-like;

however as shown in Figure 4 there is coma present, so

this represents an upper limit.

The discovery of 3I/ATLAS allows us to calculate a

preliminary order of magnitude estimate of the num-

ber density of interstellar objects in its size range. For

objects with a number density n, a velocity v∞, and

that are detected within a distance d, the detection rate

Γ = πd2v∞n. ATLAS observes the entire night sky

down to apparent magnitude 19 every night. We will

assume that ATLAS has a 100% completeness for all

objects with apparent magnitude m ≤ 19 that appears

in the night sky. For an object with an absolute magni-

tude of H, the apparent magnitude m is given by:

m = H + 5 log10

(
dSdO
au2

)
− 2.5 log10 q(α) . (3)

Here, dS is the distance from the object to the Sun, dO
is the distance from the object to the Earth, and q(α)

is a function of the phase angle that accounts for oppo-

sition brightening. For simplicity, we will assume that

the phase angle factor has an angle-averaged value of

q(α) ∼ 0.3 and that d = dS = dO. With these ap-

proximations, ATLAS will discover all objects with an

absolute magnitude of H ≤ 12 that pass within a dis-

tance of d = 4 au. Since ground-based surveys like AT-

LAS survey only cover about two thirds of the sky and

v∞ = 60 km/s, the estimated detection rate of objects

with H ≤ 12 is:

Γ ≃ 300 au3/yrn . (4)

Since ATLAS has been monitoring the entire sky for

three years and has found one interstellar object, the

implied number density is n ≃ 10−3 au−3. We note that

this is only an order-of-magnitude estimate. Regardless,

this is much smaller than the estimated 0.1 au−3 calcu-

lated for 1I/‘Oumuamua and 2I/Borisov.

It is immediately apparent that 3I/ATLAS is not

in the same class of object as 1I/‘Oumuamua or

2I/Borisov. Where 1I/‘Oumuamua had a varying light

curve (D. Jewitt & J. Luu 2019; A. Fitzsimmons et al.

2019; B. T. Bolin et al. 2020; Q. Ye et al. 2020; A. J.

McKay et al. 2020; P. Guzik et al. 2020; M.-T. Hui et al.

2020; Y. Kim et al. 2020; G. Cremonese et al. 2020;

B. Yang et al. 2021), 3I/ATLAS has little significant

variation, but appears to have a similarly red slope (J.

Masiero 2017; A. Fitzsimmons et al. 2018; M. T. Ban-

nister et al. 2017). Whether this is due to similar natal
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formation conditions or similar irradiation processes as

an interstellar object is worthy of future investigation.

In contrast to 2I/Borisov’s significant cometary activity

(D. Jewitt & J. Luu 2019; A. Fitzsimmons et al. 2019;

B. T. Bolin et al. 2020; Q. Ye et al. 2020; A. J. McKay

et al. 2020; P. Guzik et al. 2020; M.-T. Hui et al. 2020; Y.

Kim et al. 2020; G. Cremonese et al. 2020; B. Yang et al.

2021), 3I/ATLAS shows only very weak activity. In ad-

dition, the newest interstellar object’s apparent magni-

tude would make it likely an order of magnitude larger in

size than 2I/Borisov. Therefore, 3I/ATLAS will probe a

new size regime for the interstellar object size frequency

distribution. All of these properties may change in the

coming weeks as the object is heated for perhaps the first

time during its perihelion passage. Comprehensive and

collaborative investigations of 3I/ATLAS based off the

lessons learned from the 1I/‘Oumuamua and 2I/Borisov

campaigns are poised to significantly expand our knowl-

edge of the interstellar object population.

All of these data point to a clear action for the com-

munity — more observations across the spectrum are

necessary. We encourage the observational astronomy

community to collect data on 3I/ATLAS, be it photom-

etry, spectroscopy, or polarimetry, to provide key evi-

dence for the rotational phase light curve, any activity

onset and variations, dust size frequency distributions,

and constrain nongravitational acceleration. The peri-

helion of 3I/ATLAS will not be easily observable from

Earth-based observatories, as the object will be on the

opposite side of the Sun and at a low solar elongation an-

gle. However, the object will approach within 0.4 au of

Mars during perihelion, and we encourage nearby space-

craft (Mars Reconnaissance Orbiter, MAVEN, Jupiter

Icy Moons Explorer) equipped with visible, UV, and IR

spectrographs and cameras to capture data on this ob-

ject’s closest approach. Such data sets would be invalu-

able to understanding 3I/ATLAS’s activity before and

after its perihelion passage. Given the community’s ex-

perience with 1I/‘Oumuamua and 2I/Borisov, all obser-

vatories, instruments, and observational strategies are

necessary to track any changes to the new interstellar

object.
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